Model#
class Head(nn.Module):def __init__(self, head_size) -> None:super().__init__()self.key = nn.Linear(n_embed, head_size, bias=False)self.query = nn.Linear(n_embed, head_size, bias=False)self.value = nn.Linear(n_embed, head_size, bias=False)self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))self.dropout = nn.Dropout(dropout)def forward(self, x):B,T,C = x.shapek = self.key(x) # (B, T, C)q = self.query(x) # (B, T, C)# compute attention scores ("affinities")wei = q @ k.transpose(-2,-1) * C**-0.05 # (B, T, C) @ (B, C, T) -> (B, T, T)wei = wei.masked_fill(self.tril[:T,:T] == 0, float('-inf')) # (B, T, T)wei = F.softmax(wei, dim=-1) # (B, T, T)wei = self.dropout(wei)# perform the weighted aggregation of the valuesv = self.value(x) # (B, T, C)out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)return outclass FeedForward(nn.Module):def __init__(self, n_embed) -> None:super().__init__()self.net = nn.Sequential(nn.Linear(n_embed, 4 * n_embed),nn.ReLU(),nn.Linear(4 * n_embed, n_embed),nn.Dropout(dropout))def forward(self, x):return self.net(x)class MultiHeadAttention(nn.Module):def __init__(self, num_heads, head_size) -> None:super().__init__()self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])self.proj = nn.Linear(n_embed, n_embed)self.dropout = nn.Dropout(dropout)def forward(self, x):out = torch.cat([h(x) for h in self.heads], dim=-1)out = self.dropout(self.proj(out))return outclass Block(nn.Module):def __init__(self, n_embed, n_head) -> None:super().__init__()head_size = n_embed // n_headself.sa = MultiHeadAttention(n_head, head_size)self.ffwd = FeedForward(n_embed)self.ln1 = nn.LayerNorm(n_embed)self.ln2 = nn.LayerNorm(n_embed)def forward(self, x):x = x + self.sa(self.ln1(x))x = x + self.ffwd(self.ln2(x))return xclass BigramLanguageMmodel(nn.Module):def __init__(self, vocab_size) -> None:super().__init__()self.token_embedding_table = nn.Embedding(vocab_size, n_embed)self.position_embedding_talbe = nn.Embedding(block_size, n_embed)self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])self.ln_f = nn.LayerNorm(n_embed) # final layer normself.lm_head = nn.Linear(n_embed, vocab_size)def forward(self, idx, targets=None):B, T = idx.shape# idx and targets are both (B, T) tensor of integerstok_emb = self.token_embedding_table(idx) # (B, T, C)pos_emb = self.position_embedding_talbe(torch.arange(T, device=device))x = tok_emb + pos_emb # (B, T, C)x = self.blocks(x) # (B, T, C)x = self.ln_f(x) # (B, T, C)logits = self.lm_head(x) # (B, T, vocab_size)if targets is None:loss = Noneelse:B, T, C = logits.shapelogits = logits.view(B*T, C)targets = targets.view(B*T)# softmax and lossloss = F.cross_entropy(logits, targets)return logits, lossdef generate(self, idx, max_new_tokens):# idx is (B, T) array of indicies in the current contextfor _ in range(max_new_tokens):# crop ind to the last block_size tokensidx_cond = idx[:, -block_size:]# get the predictionslogits, loss = self(idx_cond)# focus only on the last time steplogits = logits[:, -1, :] # become (B, C)# apply softmax to get probablitiesprobs = F.softmax(logits, dim=-1) # (B, C)# sample from the distributionidx_next = torch.multinomial(probs, num_samples=1) # (B, 1)# append sampled index to the running sequenceidx = torch.cat((idx, idx_next), dim=1) # (B, T+1)return idx
Train#
Let setup some parameters
batch_size = 64 # how many independent sequences will we process in parallelblock_size = 256 # what is the maximum context length for predictions?max_iters = 5000eval_interval = 500learning_rate = 3e-4device = 'cuda' if torch.cuda.is_available() else 'cpu'eval_iters = 200n_embed = 384n_head = 6n_layer = 6dropout = 0.2torch.manual_seed(1337)
Read data
with open("input.txt", 'r', encoding='utf-8') as f:text = f.read()chars = sorted(list(set(text)))vocab_size =len(chars)print('.'.join(chars))print(vocab_size)stoi = { ch:i for i,ch in enumerate(chars)}itos = { i:ch for i,ch in enumerate(chars)}
Create a batch
def get_batch(split):# generate a small batch of data of input x and targets ydata = train_data if split == 'train' else val_dataix = torch.randint(len(data) - block_size, (batch_size,))x = torch.stack([ data[i:i+block_size] for i in ix])y = torch.stack([ data[i+1: i+block_size+1] for i in ix])x,y = x.to(device), y.to(device)return x, y
Estimate loss
@torch.no_grad()def estimate_loss():out = {}model.eval()for split in ['train', 'val']:losses = torch.zeros(eval_iters)for k in range(eval_iters):X, Y = get_batch(split)logits, loss = model(X, Y)losses[k] = loss.item()out[split] = losses.mean()model.train()return out
Train model
model = BigramLanguageMmodel(vocab_size)model = model.to(device)# batch_size = 32for iter in range(max_iters):# every once in a while evaluate the loss on the train and val setsif iter % eval_interval == 0:losses = estimate_loss()print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")# sample a batch of dataxb, yb = get_batch("train")# evaluate the losslogits, loss = model(xb, yb)# optimizer stepoptimizer.zero_grad(set_to_none=True)loss.backward()optimizer.step()
Reference#
Andrej Karpathy Let's build GPT: from scratch, in code, spelled out
Andrej Karpathy nanoGPT GitHub
Natural Language Processing with Transformers, Revised Edition