Model#

class Head(nn.Module):
def __init__(self, head_size) -> None:
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias=False)
self.query = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B, T, C)
q = self.query(x) # (B, T, C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * C**-0.05 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T,:T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B, T, C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class FeedForward(nn.Module):
def __init__(self, n_embed) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size) -> None:
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class Block(nn.Module):
def __init__(self, n_embed, n_head) -> None:
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLanguageMmodel(nn.Module):
def __init__(self, vocab_size) -> None:
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_talbe = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed) # final layer norm
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B, T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B, T, C)
pos_emb = self.position_embedding_talbe(torch.arange(T, device=device))
x = tok_emb + pos_emb # (B, T, C)
x = self.blocks(x) # (B, T, C)
x = self.ln_f(x) # (B, T, C)
logits = self.lm_head(x) # (B, T, vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
# softmax and loss
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indicies in the current context
for _ in range(max_new_tokens):
# crop ind to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # become (B, C)
# apply softmax to get probablities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx

Train#

Let setup some parameters

batch_size = 64 # how many independent sequences will we process in parallel
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embed = 384
n_head = 6
n_layer = 6
dropout = 0.2
torch.manual_seed(1337)

Read data

with open("input.txt", 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size =len(chars)
print('.'.join(chars))
print(vocab_size)
stoi = { ch:i for i,ch in enumerate(chars)}
itos = { i:ch for i,ch in enumerate(chars)}

Create a batch

def get_batch(split):
# generate a small batch of data of input x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([ data[i:i+block_size] for i in ix])
y = torch.stack([ data[i+1: i+block_size+1] for i in ix])
x,y = x.to(device), y.to(device)
return x, y

Estimate loss

@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out

Train model

model = BigramLanguageMmodel(vocab_size)
model = model.to(device)
# batch_size = 32
for iter in range(max_iters):
# every once in a while evaluate the loss on the train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch("train")
# evaluate the loss
logits, loss = model(xb, yb)
# optimizer step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()

Reference#

Andrej Karpathy Let's build GPT: from scratch, in code, spelled out

Andrej Karpathy nanoGPT GitHub

Attention Is All You Need

Natural Language Processing with Transformers, Revised Edition